Ela Spectral Properties of Oriented Hypergraphs
نویسنده
چکیده
An oriented hypergraph is a hypergraph where each vertex-edge incidence is given a label of +1 or −1. The adjacency and Laplacian eigenvalues of an oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and Laplacian matrices of an oriented hypergraph which depend on structural parameters of the oriented hypergraph are found. An oriented hypergraph and its incidence dual are shown to have the same nonzero Laplacian eigenvalues. A family of oriented hypergraphs with uniformally labeled incidences is also studied. This family provides a hypergraphic generalization of the signless Laplacian of a graph and also suggests a natural way to define the adjacency and Laplacian matrices of a hypergraph. Some results presented generalize both graph and signed graph results to a hypergraphic setting.
منابع مشابه
Directed domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملSome Spectral Properties of Uniform Hypergraphs
For a k-uniform hypergraph H, we obtain some trace formulas for the Laplacian tensor of H, which imply that ∑n i=1 d s i (s = 1, . . . , k) is determined by the Laplacian spectrum of H, where d1, . . . , dn is the degree sequence of H. Using trace formulas for the Laplacian tensor, we obtain expressions for some coefficients of the Laplacian polynomial of a regular hypergraph. We give some spec...
متن کاملOriented Hypergraphs: Introduction and Balance
An oriented hypergraph is an oriented incidence structure that extends the concept of a signed graph. We introduce hypergraphic structures and techniques central to the extension of the circuit classification of signed graphs to oriented hypergraphs. Oriented hypergraphs are further decomposed into three families – balanced, balanceable, and unbalanceable – and we obtain a complete classificati...
متن کاملSpectra of Uniform Hypergraphs
We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work has led to a rich understanding of “symmetric hyperdeterminants” of hypermatrices, a.k.a. multidimensional arrays. Symmetric hyperdeterminants share many properties with determinants, but the context of multilinear algebra is substantiall...
متن کاملHigh-Ordered Random Walks and Generalized Laplacians on Hypergraphs
Despite of the extreme success of the spectral graph theory, there are relatively few papers applying spectral analysis to hypergraphs. Chung first introduced Laplacians for regular hypergraphs and showed some useful applications. Other researchers treated hypergraphs as weighted graphs and then studied the Laplacians of the corresponding weighted graphs. In this paper, we aim to unify these ve...
متن کامل